8,812 research outputs found

    Super-Eddington accretion rates in Narrow Line Seyfert 1 galaxies

    Full text link
    Using the BH masses deduced from the empirical relation of Kaspi et al. (2000) and assuming that the optical luminosity is provided by the accretion disc, we show that Narrow Line Seyfert Galaxies 1 (NLS1s) accrete at super-Eddington rates, while their luminosity stays of the order of the Eddington limit. We take into account the possibility of a non-viscous energy release in the gravitationally unstable region of the disc. It leads to a smaller accretion rate and to a redder continuum than a standard disc, which agrees better with the observations. The observed bolometric luminosities appear to saturate at a few times the Eddington luminosity for super-Eddington accretion rates, as predicted by slim disc models. The accretion rate stays always of the order of a few M_{\odot}/yr, indicating that the growing of the BH is mass supply limited . Since the masses of the BH increases by one order of magnitude in a few 107^7 years, it could explain why NLS1s appear to not follow the same BH - bulge relation as other galaxies. NLS1s should thus play an important role in shaping the mass function of local BHs. We discuss the possibility that the masses could be systematically underestimated due to an inclination effect, and we conclude that the accretion rates could thus be strongly overestimated, but only in a small proportion of objects.Comment: 13 pages, 8 figures, accepted in A &

    Experimental evidence of TcT_c enhancement without the influence of spin fluctuations: NMR study on LaFeAsO_{1-x}H_x under a pressure of 3.0 GPa

    Get PDF
    The electron-doped high-transition-temperature (T_c) iron-based pnictide superconductor LaFeAsO_{1-x}H_x has a unique phase diagram: superconducting (SC) double domes are sandwiched by antiferromagnetic phases at ambient pressure and they turn to a single dome with a maximum T_c that exceeds 45K at a pressure of 3.0 GPa. We studied whether spin fluctuations are involved in increasing T_c under a pressure of 3.0 GPa by using ^{75}As nuclear magnetic resonance (NMR) technique. The ^{75}As-NMR results for the powder samples show that T_c increases up to 48 K without the influence of spin fluctuations. The fact indicates that spin fluctuations are not involved in raising T_c, which implies that other factors, such as orbital degrees of freedom, may be important for achieving a high T_c of almost 50 K.Comment: Correponding Author: Naoki Fujiwar

    Aggregate Impacts of a Gift of Time

    Get PDF
    How would people spend additional time if confronted by permanent declines in market work? We examine the impacts of cuts in legislated standard hours that raised employers' overtime costs in Japan around 1990 and Korea in the early 2000s. Using time-diaries from before and after these shocks, we show that these shocks were effective – per-capita hours of market work declined discretely. The economy-wide drops in market work were reallocated solely to leisure and personal maintenance. In the absence of changing household technology a permanent time gift leads to no increase in time spent in household production by the average individual.time use, household production, demand shock, macroeconomic effects

    Aggregate Impacts of a Gift of Time

    Get PDF
    How would people spend additional time if confronted by permanent declines in market work? We examine the impacts of cuts in legislated standard hours that raised employers’ overtime costs in Japan around 1990 and Korea in the early 2000s. Using time-diaries from before and after these shocks, we show that these shocks were effective—per-capita hours of market work declined discretely. The economy-wide drops in market work were reallocated solely to leisure and personal maintenance. In the absence of changing household technology a permanent time gift leads to no increase in time spent in household production by the average individual.

    Temporal 1/f^\alpha Fluctuations from Fractal Magnetic Fields in Black Hole Accretion Flow

    Full text link
    Rapid fluctuation with a frequency dependence of 1/fα1/f^{\alpha} (with α12\alpha \simeq 1 - 2) is characteristic of radiation from black-hole objects. Its origin remains poorly understood. We examine the three-dimensional magnetohydrodynamical (MHD) simulation data, finding that a magnetized accretion disk exhibits both 1/fα1/f^\alpha fluctuation (with α2\alpha \simeq 2) and a fractal magnetic structure (with the fractal dimension of D1.9D \sim 1.9). The fractal field configuration leads reconnection events with a variety of released energy and of duration, thereby producing 1/fα1/f^\alpha fluctuations.Comment: 5 pages, 4 figures. Accepted for publication in PASJ Letters, vol. 52 No.1 (Feb 2000

    Scalable Sparse Cox's Regression for Large-Scale Survival Data via Broken Adaptive Ridge

    Full text link
    This paper develops a new scalable sparse Cox regression tool for sparse high-dimensional massive sample size (sHDMSS) survival data. The method is a local L0L_0-penalized Cox regression via repeatedly performing reweighted L2L_2-penalized Cox regression. We show that the resulting estimator enjoys the best of L0L_0- and L2L_2-penalized Cox regressions while overcoming their limitations. Specifically, the estimator is selection consistent, oracle for parameter estimation, and possesses a grouping property for highly correlated covariates. Simulation results suggest that when the sample size is large, the proposed method with pre-specified tuning parameters has a comparable or better performance than some popular penalized regression methods. More importantly, because the method naturally enables adaptation of efficient algorithms for massive L2L_2-penalized optimization and does not require costly data driven tuning parameter selection, it has a significant computational advantage for sHDMSS data, offering an average of 5-fold speedup over its closest competitor in empirical studies

    The classical origin of quantum affine algebra in squashed sigma models

    Get PDF
    We consider a quantum affine algebra realized in two-dimensional non-linear sigma models with target space three-dimensional squashed sphere. Its affine generators are explicitly constructed and the Poisson brackets are computed. The defining relations of quantum affine algebra in the sense of the Drinfeld first realization are satisfied at classical level. The relation to the Drinfeld second realization is also discussed including higher conserved charges. Finally we comment on a semiclassical limit of quantum affine algebra at quantum level.Comment: 25 pages, 2 figure

    Quantum critical behavior in heavily doped LaFeAsO1x_{1-x}Hx_x pnictide superconductors analyzed using nuclear magnetic resonance

    Get PDF
    We studied the quantum critical behavior of the second antiferromagnetic (AF) phase in the heavily electron-doped high-TcT_c pnictide, LaFeAsO1x_{1-x}Hx_x by using 75^{75}As and 1^{1}H nuclear-magnetic-resonance (NMR) technique. In the second AF phase, we observed a spatially modulated spin-density-wave-like state up to xx=0.6 from the NMR spectral lineshape and detected a low-energy excitation gap from the nuclear relaxation time T1T_1 of 75^{75}As. The excitation gap closes at the AF quantum critical point (QCP) at x0.49x \approx 0.49. The superconducting (SC) phase in a lower-doping regime contacts the second AF phase only at the AF QCP, and both phases are segregated from each other. The absence of AF critical fluctuations and the enhancement of the in-plane electric anisotropy are key factors for the development of superconductivity.Comment: accepted in Phys. Rev.
    corecore